Continuous hierarchical representations with poincaré Variational Auto-Encoder
The Variational Auto-Encoder (VAE) is a popular method for learning a generative model and embeddings of the data. Many real datasets are hierarchically structured. However, traditional VAEs map data in a Euclidean latent space which cannot efficiently embed tree-like structures. Hyperbolic spaces w...
主要な著者: | Mathieu,E, Le Lan, C, Maddison, CJ, Tomioka, R, Teh, YW |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Curran Associates
2019
|
類似資料
-
Partial disentanglement of hierarchical variational auto‐encoder for texture synthesis
著者:: Marek Jakab, 等
出版事項: (2020-12-01) -
VAEEG: Variational auto-encoder for extracting EEG representation
著者:: Tong Zhao, 等
出版事項: (2024-12-01) -
Representation learning by hierarchical ELM auto‐encoder with double random hidden layers
著者:: Rui Li, 等
出版事項: (2019-06-01) -
Learning Sparse Representation With Variational Auto-Encoder for Anomaly Detection
著者:: Jiayu Sun, 等
出版事項: (2018-01-01) -
Hamiltonian Variational Auto-Encoder
著者:: Caterini, A, 等
出版事項: (2019)