Continuous hierarchical representations with poincaré Variational Auto-Encoder
The Variational Auto-Encoder (VAE) is a popular method for learning a generative model and embeddings of the data. Many real datasets are hierarchically structured. However, traditional VAEs map data in a Euclidean latent space which cannot efficiently embed tree-like structures. Hyperbolic spaces w...
Главные авторы: | Mathieu,E, Le Lan, C, Maddison, CJ, Tomioka, R, Teh, YW |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Curran Associates
2019
|
Схожие документы
-
Partial disentanglement of hierarchical variational auto‐encoder for texture synthesis
по: Marek Jakab, и др.
Опубликовано: (2020-12-01) -
VAEEG: Variational auto-encoder for extracting EEG representation
по: Tong Zhao, и др.
Опубликовано: (2024-12-01) -
Representation learning by hierarchical ELM auto‐encoder with double random hidden layers
по: Rui Li, и др.
Опубликовано: (2019-06-01) -
Learning Sparse Representation With Variational Auto-Encoder for Anomaly Detection
по: Jiayu Sun, и др.
Опубликовано: (2018-01-01) -
Hamiltonian Variational Auto-Encoder
по: Caterini, A, и др.
Опубликовано: (2019)