Predicting future hospital antimicrobial resistance prevalence using machine learning
Background: Predicting antimicrobial resistance (AMR), a top global health threat, nationwide at an aggregate hospital level could help target interventions. Using machine learning, we exploit historical AMR and antimicrobial usage to predict future AMR. Methods: Antimicrobial use and AMR prevalence...
Päätekijät: | , , , , , , , , , , , |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Nature Research
2024
|