Predicting future hospital antimicrobial resistance prevalence using machine learning
Background: Predicting antimicrobial resistance (AMR), a top global health threat, nationwide at an aggregate hospital level could help target interventions. Using machine learning, we exploit historical AMR and antimicrobial usage to predict future AMR. Methods: Antimicrobial use and AMR prevalence...
Автори: | Vihta, K, Pritchard, E, Pouwels, KB, Hopkins, S, Guy, RL, Henderson, K, Chudasama, D, Hope, R, Muller-Pebody, B, Walker, AS, Clifton, D, Eyre, DW |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Nature Research
2024
|
Схожі ресурси
Схожі ресурси
-
Predicting future hospital antimicrobial resistance prevalence using machine learning
за авторством: Karina-Doris Vihta, та інші
Опубліковано: (2024-10-01) -
Detecting changes in population trends in infection surveillance using community SARS-CoV-2 prevalence as an exemplar
за авторством: Pritchard, E, та інші
Опубліковано: (2024) -
Selection and co-selection of antibiotic resistances among Escherichia coli by antibiotic use in primary care: An ecological analysis
за авторством: Pouwels, KB, та інші
Опубліковано: (2019) -
Prevalence of resistance to antibiotics in children's urinary Escherichia coli isolates estimated using national surveillance data
за авторством: Pouwels, K, та інші
Опубліковано: (2018) -
Omicron-associated changes in SARS-CoV-2 symptoms in the United Kingdom
за авторством: Vihta, K, та інші
Опубліковано: (2022)