Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere
Starting from Hamilton's principle on a rotating sphere, we derive a series of successively more accurate β-plane approximations. These are Cartesian approximations to motion in spherical geometry that capture the change with latitude of the angle between the rotation vector and the local verti...
Главный автор: | Dellar, P |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2011
|
Схожие документы
-
Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane
по: Stewart, A, и др.
Опубликовано: (2010) -
Analysis of certain inviscid flows on the beta plane
по: Moro, Boris
Опубликовано: (2010) -
Doppler-shifted inertial oscillations on a beta plane
по: Zhai, X, и др.
Опубликовано: (2005) -
On the advection of tracer by eddies on the beta-plane: A numerical study
по: E. S. Benilov
Опубликовано: (1999-01-01) -
Multilayer shallow water equations with complete Coriolis force. Part 2. Linear plane waves
по: Stewart, A, и др.
Опубликовано: (2011)