Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search
Path planning in robotics often requires finding high-quality solutions to continuously valued and/or high-dimensional problems. These problems are challenging and most planning algorithms instead solve simplified approximations. Popular approximations include graphs and random samples, as used by i...
主要な著者: | Gammell, JD, Barfoot, TD, Srinivasa, SS |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
SAGE Publications
2020
|
類似資料
-
Informed sampling for asymptotically optimal path planning
著者:: Gammell, J, 等
出版事項: (2018) -
Adaptively Informed Trees (AIT*): fast asymptotically optimal path planning through adaptive heuristics
著者:: Strub, MP, 等
出版事項: (2020) -
Task and motion informed trees (TMIT*): Almost-surely asymptotically optimal integrated task and motion planning
著者:: Thomason, W, 等
出版事項: (2022) -
Anytime information theory
著者:: Sahai, Anant
出版事項: (2005) -
Library information anytime anywhere
著者:: Tony, Ferguson
出版事項: (2004)