Convergence to closed-form distribution for the backward S L E κ at some random times and the phase transition at κ = 8
We study a one-dimensional SDE that we obtain by performing a random time change of the backward Loewner dynamics in H. The stationary measure for this SDE has a closed-form expression. We show the convergence towards its stationary measure for this SDE, in the sense of random ergodic averages. The...
Hlavní autoři: | Lyons, TJ, Margarint, V, Nejad, S |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Elsevier
2023
|
Podobné jednotky
-
Continuity in κ in SLEκ theory using a constructive method and rough path theory
Autor: Beliaev, D, a další
Vydáno: (2021) -
An asymptotic radius of convergence for the Loewner equation and simulation of SLEκ traces via splitting
Autor: Foster, J, a další
Vydáno: (2022) -
A new approach to SLE phase transition
Autor: Beliaev, D, a další
Vydáno: (2020) -
Continuity of zero-hitting times of Bessel processes and welding homeomorphisms of SLE$_κ$
Autor: Beliaev, D, a další
Vydáno: (2021) -
Imaginary geometry III: reversibility of SLEκ for κ ∈ (4, 8)
Autor: Miller, Jason P., a další
Vydáno: (2018)