Rethinking visual prompting for multimodal large language models with external knowledge
In recent years, multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets, enabling them to generally understand images well. However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in tex...
Hlavní autoři: | Lin, Y, Li, Y, Chen, D, Xu, W, Clark, R, Torr, P, Yuan, L |
---|---|
Médium: | Internet publication |
Jazyk: | English |
Vydáno: |
2024
|
Podobné jednotky
-
Prompting Large Language Models with Knowledge-Injection for Knowledge-Based Visual Question Answering
Autor: Zhongjian Hu, a další
Vydáno: (2024-09-01) -
Knowledge graph construction for heart failure using large language models with prompt engineering
Autor: Tianhan Xu, a další
Vydáno: (2024-07-01) -
Prompt Optimization in Large Language Models
Autor: Antonio Sabbatella, a další
Vydáno: (2024-03-01) -
CAT: enhancing multimodal large language model to answer questions in dynamic audio-visual scenarios
Autor: Ye, Q, a další
Vydáno: (2024) -
Review of large vision models and visual prompt engineering
Autor: Jiaqi Wang, a další
Vydáno: (2023-11-01)