Global weak solutions for the compressive active liquid crystal system
We study the hydrodynamics of compressible flows of active liquid crystals in the Beris--Edwards hydrodynamics framework, using the Landau--de Gennes $Q$-tensor order parameter to describe liquid crystalline ordering. We prove the existence of global weak solutions for this active system in three sp...
Autors principals: | Chen, G, Majumdar, A, Wang, D, Zhang, R |
---|---|
Format: | Journal article |
Publicat: |
Society for Industrial and Applied Mathematics
2018
|
Ítems similars
-
Global existence and regularity of solutions for active liquid crystals
per: Chen, G, et al.
Publicat: (2017) -
Global Well-Posedness for the Compressible Nematic Liquid Crystal Flows
per: Miho Murata
Publicat: (2022-12-01) -
Symmetry of uniaxial global Landau-de Gennes minimizers in the
theory of nematic liquid crystals
per: Henao, D, et al.
Publicat: (2011) -
Stationary Solutions to the Three-Dimensional Compressible Nonisothermal Nematic Liquid Crystal Flows
per: Wanchen Cui, et al.
Publicat: (2022-01-01) -
Global low-energy weak solutions for compressible magneto-micropolar fluids with discontinuous initial data in R^3
per: Wanping Wu, et al.
Publicat: (2023-12-01)