STAMP: Simultaneous Training and Model Pruning for low data regimes in medical image segmentation
Acquisition of high quality manual annotations is vital for the development of segmentation algorithms. However, to create them we require a substantial amount of expert time and knowledge. Large numbers of labels are required to train convolutional neural networks due to the vast number of paramete...
المؤلفون الرئيسيون: | Dinsdale, NK, Jenkinson, M, Namburete, AIL |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Elsevier
2022
|
مواد مشابهة
-
Unlearning scanner bias for MRI harmonisation in medical image segmentation
حسب: Dinsdale, NK, وآخرون
منشور في: (2020) -
Anatomically plausible segmentations: explicitly preserving topology through prior deformations
حسب: Wyburd, MK, وآخرون
منشور في: (2024) -
TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations
حسب: Wyburd, MK, وآخرون
منشور في: (2021) -
Unlearning scanner bias for MRI harmonisation
حسب: Dinsdale, NK, وآخرون
منشور في: (2020) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
حسب: Dinsdale, NK, وآخرون
منشور في: (2024)