STAMP: Simultaneous Training and Model Pruning for low data regimes in medical image segmentation
Acquisition of high quality manual annotations is vital for the development of segmentation algorithms. However, to create them we require a substantial amount of expert time and knowledge. Large numbers of labels are required to train convolutional neural networks due to the vast number of paramete...
Main Authors: | Dinsdale, NK, Jenkinson, M, Namburete, AIL |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Elsevier
2022
|
פריטים דומים
-
Unlearning scanner bias for MRI harmonisation in medical image segmentation
מאת: Dinsdale, NK, et al.
יצא לאור: (2020) -
Anatomically plausible segmentations: explicitly preserving topology through prior deformations
מאת: Wyburd, MK, et al.
יצא לאור: (2024) -
TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations
מאת: Wyburd, MK, et al.
יצא לאור: (2021) -
Unlearning scanner bias for MRI harmonisation
מאת: Dinsdale, NK, et al.
יצא לאור: (2020) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
מאת: Dinsdale, NK, et al.
יצא לאור: (2024)