STAMP: Simultaneous Training and Model Pruning for low data regimes in medical image segmentation
Acquisition of high quality manual annotations is vital for the development of segmentation algorithms. However, to create them we require a substantial amount of expert time and knowledge. Large numbers of labels are required to train convolutional neural networks due to the vast number of paramete...
Үндсэн зохиолчид: | Dinsdale, NK, Jenkinson, M, Namburete, AIL |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Elsevier
2022
|
Ижил төстэй зүйлс
-
Unlearning scanner bias for MRI harmonisation in medical image segmentation
-н: Dinsdale, NK, зэрэг
Хэвлэсэн: (2020) -
Anatomically plausible segmentations: explicitly preserving topology through prior deformations
-н: Wyburd, MK, зэрэг
Хэвлэсэн: (2024) -
TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations
-н: Wyburd, MK, зэрэг
Хэвлэсэн: (2021) -
Unlearning scanner bias for MRI harmonisation
-н: Dinsdale, NK, зэрэг
Хэвлэсэн: (2020) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
-н: Dinsdale, NK, зэрэг
Хэвлэсэн: (2024)