A Lipschitz metric for the Camassa–Holm equation
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is requ...
Hlavní autoři: | Carrillo, JA, Grunert, K, Holden, H |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Cambridge University Press
2020
|
Podobné jednotky
-
A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION
Autor: JOSÉ A. CARRILLO, a další
Vydáno: (2020-01-01) -
A Lipschitz metric for the Hunter–Saxton equation
Autor: Carrillo de la Plata, JA, a další
Vydáno: (2019) -
A CONTINUOUS INTERPOLATION BETWEEN CONSERVATIVE AND DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA–HOLM SYSTEM
Autor: KATRIN GRUNERT, a další
Vydáno: (2015-01-01) -
A Note on the Generalized Camassa-Holm Equation
Autor: Yun Wu, a další
Vydáno: (2014-01-01) -
The Uniqueness of Strong Solutions for the Camassa-Holm Equation
Autor: Meng Wu, a další
Vydáno: (2013-01-01)