A Lipschitz metric for the Camassa–Holm equation
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is requ...
Päätekijät: | Carrillo, JA, Grunert, K, Holden, H |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Cambridge University Press
2020
|
Samankaltaisia teoksia
-
A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION
Tekijä: JOSÉ A. CARRILLO, et al.
Julkaistu: (2020-01-01) -
A Lipschitz metric for the Hunter–Saxton equation
Tekijä: Carrillo de la Plata, JA, et al.
Julkaistu: (2019) -
A CONTINUOUS INTERPOLATION BETWEEN CONSERVATIVE AND DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA–HOLM SYSTEM
Tekijä: KATRIN GRUNERT, et al.
Julkaistu: (2015-01-01) -
A Note on the Generalized Camassa-Holm Equation
Tekijä: Yun Wu, et al.
Julkaistu: (2014-01-01) -
The Uniqueness of Strong Solutions for the Camassa-Holm Equation
Tekijä: Meng Wu, et al.
Julkaistu: (2013-01-01)