A Lipschitz metric for the Camassa–Holm equation
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is requ...
Main Authors: | Carrillo, JA, Grunert, K, Holden, H |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Cambridge University Press
2020
|
פריטים דומים
-
A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION
מאת: JOSÉ A. CARRILLO, et al.
יצא לאור: (2020-01-01) -
A Lipschitz metric for the Hunter–Saxton equation
מאת: Carrillo de la Plata, JA, et al.
יצא לאור: (2019) -
A CONTINUOUS INTERPOLATION BETWEEN CONSERVATIVE AND DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA–HOLM SYSTEM
מאת: KATRIN GRUNERT, et al.
יצא לאור: (2015-01-01) -
A Note on the Generalized Camassa-Holm Equation
מאת: Yun Wu, et al.
יצא לאור: (2014-01-01) -
The Uniqueness of Strong Solutions for the Camassa-Holm Equation
מאת: Meng Wu, et al.
יצא לאור: (2013-01-01)