A Lipschitz metric for the Camassa–Holm equation
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is requ...
Главные авторы: | Carrillo, JA, Grunert, K, Holden, H |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Cambridge University Press
2020
|
Схожие документы
-
A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION
по: JOSÉ A. CARRILLO, и др.
Опубликовано: (2020-01-01) -
A Lipschitz metric for the Hunter–Saxton equation
по: Carrillo de la Plata, JA, и др.
Опубликовано: (2019) -
A CONTINUOUS INTERPOLATION BETWEEN CONSERVATIVE AND DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA–HOLM SYSTEM
по: KATRIN GRUNERT, и др.
Опубликовано: (2015-01-01) -
A Note on the Generalized Camassa-Holm Equation
по: Yun Wu, и др.
Опубликовано: (2014-01-01) -
The Uniqueness of Strong Solutions for the Camassa-Holm Equation
по: Meng Wu, и др.
Опубликовано: (2013-01-01)