Sharp threshold detection based on sup-norm error rates in high-dimensional models
<p style="text-align:justify;"> We propose a new estimator, the thresholded scaled Lasso, in high-dimensional threshold regressions. First, we establish an upper bound on the ℓ∞ estimation error of the scaled Lasso estimator of Lee, Seo, and Shin. This is a nontrivial task as the li...
Главные авторы: | , , , |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Taylor and Francis
2017
|