Decision problems for second-order holonomic sequences
We study decision problems for sequences which obey a second-order holonomic recurrence of the form f(n + 2) = P(n)f(n + 1) + Q(n)f(n) with rational polynomial coefficients, where P is non-constant, Q is non-zero, and the degree of Q is smaller than or equal to that of P. We show that existence of i...
主要な著者: | Neumann, E, Ouaknine, J, Worrell, J |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Schloss Dagstuhl – Leibniz Center for Informatics
2021
|
類似資料
-
On positivity and minimality for second-order holonomic sequences
著者:: Kenison, G, 等
出版事項: (2021) -
On rational recursion for holonomic sequences
著者:: Teguia Tabuguia, B, 等
出版事項: (2024) -
Decision Problems for Linear Recurrence Sequences.
著者:: Ouaknine, J, 等
出版事項: (2012) -
Topological and holonomic quantum computation based on second-order topological superconductors
著者:: Song-Bo Zhang, 等
出版事項: (2020-10-01) -
On the decidability of monadic second-order logic with arithmetic predicates
著者:: Berthé, V, 等
出版事項: (2024)