An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction

Antimicrobial resistance (AMR) poses a threat to global public health. To mitigate the impacts of AMR, it is important to identify the molecular mechanisms of AMR and thereby determine optimal therapy as early as possible. Conventional machine learning-based drug-resistance analyses assume genetic v...

詳細記述

書誌詳細
主要な著者: Yang, Y, Walker, TM, Kouchaki, S, Wang, C, Peto, TEA, Crook, D, CRYPTIC Consortium, Clifton, D
フォーマット: Journal article
言語:English
出版事項: Oxford University Press 2021