Drivers of AR indifferent anti-androgen resistance in prostate cancer cells.
Inhibition of the androgen receptor (AR) by second-generation anti-androgens is a standard treatment for metastatic castration resistant prostate cancer (mCRPC), but it inevitably leads to the development of resistance. Since the introduction of highly efficient AR signalling inhibitors, approximate...
Egile Nagusiak: | , , , , , , , , , , , , |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Nature Research
2019
|
_version_ | 1826293635051683840 |
---|---|
author | Handle, F Prekovic, S Helsen, C Van Den Broeck, T Smeets, E Moris, L Eerlings, R Kharraz, SE Urbanucci, A Mills, IG Joniau, S Attard, G Claessens, F |
author_facet | Handle, F Prekovic, S Helsen, C Van Den Broeck, T Smeets, E Moris, L Eerlings, R Kharraz, SE Urbanucci, A Mills, IG Joniau, S Attard, G Claessens, F |
author_sort | Handle, F |
collection | OXFORD |
description | Inhibition of the androgen receptor (AR) by second-generation anti-androgens is a standard treatment for metastatic castration resistant prostate cancer (mCRPC), but it inevitably leads to the development of resistance. Since the introduction of highly efficient AR signalling inhibitors, approximately 20% of mCRPC patients develop disease with AR independent resistance mechanisms. In this study, we generated two anti-androgen and castration resistant prostate cancer cell models that do not rely on AR activity for growth despite robust AR expression (AR indifferent). They are thus resistant against all modern AR signalling inhibitors. Both cell lines display cross-resistance against the chemotherapeutic drug docetaxel due to MCL1 upregulation but remain sensitive to the PARP inhibitor olaparib and the pan-BCL inhibitor obatoclax. RNA-seq analysis of the anti-androgen resistant cell lines identified hyper-activation of the E2F cell-cycle master regulator as driver of AR indifferent growth, which was caused by deregulation of cyclin D/E, E2F1, RB1, and increased Myc activity. Importantly, mCRPC tissue samples with low AR activity displayed the same alterations and increased E2F activity. In conclusion, we describe two cellular models that faithfully mimic the acquisition of a treatment induced AR independent phenotype that is cross-resistant against chemotherapy and driven by E2F hyper-activation. |
first_indexed | 2024-03-07T03:33:10Z |
format | Journal article |
id | oxford-uuid:bb662e10-037d-4809-96a6-050f4671cdad |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T03:33:10Z |
publishDate | 2019 |
publisher | Nature Research |
record_format | dspace |
spelling | oxford-uuid:bb662e10-037d-4809-96a6-050f4671cdad2022-03-27T05:16:48ZDrivers of AR indifferent anti-androgen resistance in prostate cancer cells.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:bb662e10-037d-4809-96a6-050f4671cdadEnglishSymplectic Elements at OxfordNature Research2019Handle, FPrekovic, SHelsen, CVan Den Broeck, TSmeets, EMoris, LEerlings, RKharraz, SEUrbanucci, AMills, IGJoniau, SAttard, GClaessens, FInhibition of the androgen receptor (AR) by second-generation anti-androgens is a standard treatment for metastatic castration resistant prostate cancer (mCRPC), but it inevitably leads to the development of resistance. Since the introduction of highly efficient AR signalling inhibitors, approximately 20% of mCRPC patients develop disease with AR independent resistance mechanisms. In this study, we generated two anti-androgen and castration resistant prostate cancer cell models that do not rely on AR activity for growth despite robust AR expression (AR indifferent). They are thus resistant against all modern AR signalling inhibitors. Both cell lines display cross-resistance against the chemotherapeutic drug docetaxel due to MCL1 upregulation but remain sensitive to the PARP inhibitor olaparib and the pan-BCL inhibitor obatoclax. RNA-seq analysis of the anti-androgen resistant cell lines identified hyper-activation of the E2F cell-cycle master regulator as driver of AR indifferent growth, which was caused by deregulation of cyclin D/E, E2F1, RB1, and increased Myc activity. Importantly, mCRPC tissue samples with low AR activity displayed the same alterations and increased E2F activity. In conclusion, we describe two cellular models that faithfully mimic the acquisition of a treatment induced AR independent phenotype that is cross-resistant against chemotherapy and driven by E2F hyper-activation. |
spellingShingle | Handle, F Prekovic, S Helsen, C Van Den Broeck, T Smeets, E Moris, L Eerlings, R Kharraz, SE Urbanucci, A Mills, IG Joniau, S Attard, G Claessens, F Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. |
title | Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. |
title_full | Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. |
title_fullStr | Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. |
title_full_unstemmed | Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. |
title_short | Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. |
title_sort | drivers of ar indifferent anti androgen resistance in prostate cancer cells |
work_keys_str_mv | AT handlef driversofarindifferentantiandrogenresistanceinprostatecancercells AT prekovics driversofarindifferentantiandrogenresistanceinprostatecancercells AT helsenc driversofarindifferentantiandrogenresistanceinprostatecancercells AT vandenbroeckt driversofarindifferentantiandrogenresistanceinprostatecancercells AT smeetse driversofarindifferentantiandrogenresistanceinprostatecancercells AT morisl driversofarindifferentantiandrogenresistanceinprostatecancercells AT eerlingsr driversofarindifferentantiandrogenresistanceinprostatecancercells AT kharrazse driversofarindifferentantiandrogenresistanceinprostatecancercells AT urbanuccia driversofarindifferentantiandrogenresistanceinprostatecancercells AT millsig driversofarindifferentantiandrogenresistanceinprostatecancercells AT joniaus driversofarindifferentantiandrogenresistanceinprostatecancercells AT attardg driversofarindifferentantiandrogenresistanceinprostatecancercells AT claessensf driversofarindifferentantiandrogenresistanceinprostatecancercells |