On orthogonal tensors and best rank-one approximation ratio
As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m × n matrix with m ≤ n is 1/%m and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Froben...
Главные авторы: | Li, Z, Nakatsukasa, Y, Soma, T, Uschmajew, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Society for Industrial and Applied Mathematics
2018
|
Схожие документы
-
Finding a low-rank basis in a matrix subspace
по: Nakatsukasa, Y, и др.
Опубликовано: (2016) -
Error localization of best $L_{1}$ polynomial approximants
по: Nakatsukasa, Y, и др.
Опубликовано: (2021) -
Low-rank approximation of parameter-dependent matrices via CUR decomposition
по: Park, T, и др.
Опубликовано: (2025) -
Orthogonal Tensor Recovery Based on Non-Convex Regularization and Rank Estimation
по: Xixiang Chen, и др.
Опубликовано: (2024-01-01) -
Tensor Completion via Smooth Rank Function Low-Rank Approximate Regularization
по: Shicheng Yu, и др.
Опубликовано: (2023-08-01)