Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
المؤلفون الرئيسيون: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Association for Uncertainty in Artificial Intelligence
2017
|
مواد مشابهة
-
Bayesian kernel two-sample testing
حسب: Zhang, Q, وآخرون
منشور في: (2022) -
Large-scale kernel methods for independence testing
حسب: Zhang, Q, وآخرون
منشور في: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
حسب: Ton, J, وآخرون
منشور في: (2018) -
Bayesian approaches to distribution regression
حسب: Law, H, وآخرون
منشور في: (2018) -
Bayesian learning of kernel embeddings
حسب: Filippi, S, وآخرون
منشور في: (2016)