Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Hlavní autoři: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Association for Uncertainty in Artificial Intelligence
2017
|
Podobné jednotky
-
Bayesian kernel two-sample testing
Autor: Zhang, Q, a další
Vydáno: (2022) -
Large-scale kernel methods for independence testing
Autor: Zhang, Q, a další
Vydáno: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
Autor: Ton, J, a další
Vydáno: (2018) -
Bayesian approaches to distribution regression
Autor: Law, H, a další
Vydáno: (2018) -
Bayesian learning of kernel embeddings
Autor: Filippi, S, a další
Vydáno: (2016)