Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Prif Awduron: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Fformat: | Conference item |
Iaith: | English |
Cyhoeddwyd: |
Association for Uncertainty in Artificial Intelligence
2017
|
Eitemau Tebyg
-
Bayesian kernel two-sample testing
gan: Zhang, Q, et al.
Cyhoeddwyd: (2022) -
Large-scale kernel methods for independence testing
gan: Zhang, Q, et al.
Cyhoeddwyd: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
gan: Ton, J, et al.
Cyhoeddwyd: (2018) -
Bayesian approaches to distribution regression
gan: Law, H, et al.
Cyhoeddwyd: (2018) -
Bayesian learning of kernel embeddings
gan: Filippi, S, et al.
Cyhoeddwyd: (2016)