Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
主要な著者: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Association for Uncertainty in Artificial Intelligence
2017
|
類似資料
-
Bayesian kernel two-sample testing
著者:: Zhang, Q, 等
出版事項: (2022) -
Large-scale kernel methods for independence testing
著者:: Zhang, Q, 等
出版事項: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
著者:: Ton, J, 等
出版事項: (2018) -
Bayesian approaches to distribution regression
著者:: Law, H, 等
出版事項: (2018) -
Bayesian learning of kernel embeddings
著者:: Filippi, S, 等
出版事項: (2016)