Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Hoofdauteurs: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
Association for Uncertainty in Artificial Intelligence
2017
|
Gelijkaardige items
-
Bayesian kernel two-sample testing
door: Zhang, Q, et al.
Gepubliceerd in: (2022) -
Large-scale kernel methods for independence testing
door: Zhang, Q, et al.
Gepubliceerd in: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
door: Ton, J, et al.
Gepubliceerd in: (2018) -
Bayesian approaches to distribution regression
door: Law, H, et al.
Gepubliceerd in: (2018) -
Bayesian learning of kernel embeddings
door: Filippi, S, et al.
Gepubliceerd in: (2016)