Feature-to-feature regression for a two-step conditional independence test

The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...

Полное описание

Библиографические подробности
Главные авторы: Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D
Формат: Conference item
Язык:English
Опубликовано: Association for Uncertainty in Artificial Intelligence 2017

Схожие документы