Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Главные авторы: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Association for Uncertainty in Artificial Intelligence
2017
|
Схожие документы
-
Bayesian kernel two-sample testing
по: Zhang, Q, и др.
Опубликовано: (2022) -
Large-scale kernel methods for independence testing
по: Zhang, Q, и др.
Опубликовано: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
по: Ton, J, и др.
Опубликовано: (2018) -
Bayesian approaches to distribution regression
по: Law, H, и др.
Опубликовано: (2018) -
Bayesian learning of kernel embeddings
по: Filippi, S, и др.
Опубликовано: (2016)