Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Asıl Yazarlar: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
Association for Uncertainty in Artificial Intelligence
2017
|
Benzer Materyaller
-
Bayesian kernel two-sample testing
Yazar:: Zhang, Q, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Large-scale kernel methods for independence testing
Yazar:: Zhang, Q, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
Yazar:: Ton, J, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Bayesian approaches to distribution regression
Yazar:: Law, H, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Bayesian learning of kernel embeddings
Yazar:: Filippi, S, ve diğerleri
Baskı/Yayın Bilgisi: (2016)