Deep variational reinforcement learning for POMDPs
Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this...
Hoofdauteurs: | Igl, M, Zintgraf, L, Le, T, Wood, F, Whiteson, S |
---|---|
Formaat: | Conference item |
Gepubliceerd in: |
Journal of Machine Learning Research
2018
|
Gelijkaardige items
-
Exploration in approximate hyper-state space for meta reinforcement learning
door: Zintgraf, L, et al.
Gepubliceerd in: (2021) -
Reinforcement learning with limited reinforcement: Using Bayes risk for active learning in POMDPs
door: Pineau, Joelle, et al.
Gepubliceerd in: (2017) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
door: Zintgraf, L, et al.
Gepubliceerd in: (2020) -
Multi-Agent Active Perception Based on Reinforcement Learning and POMDP
door: Tarik Selimovic, et al.
Gepubliceerd in: (2024-01-01) -
TreeQN and ATreeC: differentiable tree planning for deep reinforcement learning
door: Farquhar, G, et al.
Gepubliceerd in: (2018)