Hypergraph transformer for semi-supervised classification
Hypergraphs play a pivotal role in the modelling of data featuring higher-order relations involving more than two entities. Hypergraph neural networks emerge as a powerful tool for processing hypergraph-structured data, delivering remarkable performance across various tasks, e.g., hypergraph node cl...
主要な著者: | Liu, Z, Tang, B, Ye, Z, Dong, X, Chen, S, Wang, Y |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2024
|
類似資料
-
Semi-Supervised Classification via Hypergraph Convolutional Extreme Learning Machine
著者:: Zhewei Liu, 等
出版事項: (2021-04-01) -
Laplacian-based semi-Supervised learning in multilayer hypergraphs by coordinate descent
著者:: Sara Venturini, 等
出版事項: (2023-01-01) -
Hypergraph-Mlp: learning on hypergraphs without message passing
著者:: Tang, B, 等
出版事項: (2024) -
Hypergraph based semi-supervised symmetric nonnegative matrix factorization for image clustering
著者:: Yin, Jingxing, 等
出版事項: (2023) -
Hypergraph-Supervised Deep Subspace Clustering
著者:: Yu Hu, 等
出版事項: (2021-12-01)