Pathwise integration with respect to paths of finite quadratic variation

We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. T...

Description complète

Détails bibliographiques
Auteurs principaux: Ananova, A, Cont, R
Format: Journal article
Publié: Elsevier 2016
Description
Résumé:We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. This property is then used to represent the integral as a continuous map on an appropriately defined vector space of integrands. Finally, we obtain a pathwise ‘signal plus noise’ decomposition for regular functionals of an irregular path with non-vanishing quadratic variation, as a unique sum of a pathwise integral and a component with zero quadratic variation.