An adversarial training framework for mitigating algorithmic biases in clinical machine learning
<p>Machine learning is becoming increasingly prominent in healthcare. Although its benefits are clear, growing attention is being given to how these tools may exacerbate existing biases and disparities. In this study, we introduce an adversarial training framework that is capable of mitigating...
المؤلفون الرئيسيون: | Yang, J, Soltan, AAS, Eyre, DW, Yang, Y, Clifton, DA |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Springer Nature
2023
|
مواد مشابهة
-
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
حسب: Jenny Yang, وآخرون
منشور في: (2023-03-01) -
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
حسب: Yang, J, وآخرون
منشور في: (2023) -
Mitigating machine learning bias between high income and low–middle income countries for enhanced model fairness and generalizability
حسب: Yang, J, وآخرون
منشور في: (2024) -
Privacy-aware early detection of COVID-19 through adversarial training
حسب: Rohanian, M, وآخرون
منشور في: (2022) -
Deep reinforcement learning for multi-class imbalanced training: applications in healthcare
حسب: Yang, J, وآخرون
منشور في: (2023)