Probabilistic learning algorithms and optimality theory

This article provides a critical assessment of the Gradual Learning Algorithm (GLA) for probabilistic optimality-theoretic (OT) grammars proposed by Boersma and Hayes (2001). We discuss the limitations of a standard algorithm for OT learning and outline how the GLA attempts to overcome these limitat...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Keller, F, Asudeh, A
Materialtyp: Journal article
Språk:English
Publicerad: 2002