Finite element methods for Monge–Ampère type equations
<p>This thesis focuses on the numerical analysis of partial differential equations (PDEs), the main goal being the development and analysis of finite element methods (FEMs) for fully nonlinear elliptic PDEs, particularly Monge-Ampère (MA) and Hamilton-Jacobi-Bellman (HJB) equations.</p>...
Hoofdauteur: | Kawecki, E |
---|---|
Andere auteurs: | Suli, E |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
2018
|
Onderwerpen: |
Gelijkaardige items
-
Multidimensional monge-ampere equation /
door: Pogorelov, A. V. (Aleksei Vasilevich), 1919-2002
Gepubliceerd in: (2008) -
Degenerate Monge-Ampere equations over projective manifolds
door: Zhang, Zhou, Ph. D. Massachusetts Institute of Technology
Gepubliceerd in: (2006) -
The Monge-Ampere equation /
door: Gutierrez, Cristian E., 1950-
Gepubliceerd in: (2001) -
On Neumann problem for the degenerate Monge–Ampère type equations
door: Juhua Shi, et al.
Gepubliceerd in: (2021-01-01) -
Higher asymptotics of the complex Monge-Ampère equation and geometry of CR-manifolds
door: Lee, John Marshall.
Gepubliceerd in: (2022)