Fully abstract models for effectful λ-calculi via category-theoretic logical relations

We present a construction which, under suitable assumptions, takes a model of Moggi’s computational λ-calculus with sum types, effect operations and primitives, and yields a model that is adequate and fully abstract. The construction, which uses the theory of fibrations, categorical glueing, ⊤⊤-lift...

詳細記述

書誌詳細
主要な著者: Kammar, O, Katsumata, S-Y, Saville, P
フォーマット: Conference item
言語:English
出版事項: Association for Computing Machinery 2022
その他の書誌記述
要約:We present a construction which, under suitable assumptions, takes a model of Moggi’s computational λ-calculus with sum types, effect operations and primitives, and yields a model that is adequate and fully abstract. The construction, which uses the theory of fibrations, categorical glueing, ⊤⊤-lifting, and ⊤⊤-closure, takes inspiration from O’Hearn & Riecke’s fully abstract model for PCF. Our construction can be applied in the category of sets and functions, as well as the category of diffeological spaces and smooth maps and the category of quasi-Borel spaces, which have been studied as semantics for differentiable and probabilistic programming.