On pretraining data diversity for self-supervised learning

We explore the impact of training with more diverse datasets, characterized by the number of unique samples, on the performance of self-supervised learning (SSL) under a fixed computational budget. Our findings consistently demonstrate that increasing pretraining data diversity enhances SSL performa...

ver descrição completa

Detalhes bibliográficos
Principais autores: Hammoud, HAAK, Das, T, Pizzati, F, Torr, P, Bibi, A, Ghanem, B
Formato: Conference item
Idioma:English
Publicado em: Springer 2024