Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI
In this paper, we develop a very efficient approach to the Monte Carlo estimation of the expected value of partial perfect information (EVPPI) that measures the average benefit of knowing the value of a subset of uncertain parameters involved in a decision model. The calculation of EVPPI is inherent...
Главные авторы: | Giles, M, Goda, T |
---|---|
Формат: | Journal article |
Опубликовано: |
Springer Verlag
2018
|
Схожие документы
-
MLMC for nested expectations
по: Giles, MB
Опубликовано: (2018) -
MLMC techniques for discontinuous functions
по: Giles, MB
Опубликовано: (2024) -
A CLT for infinitely stratified estimators, with applications to debiased MLMC *
по: Zheng Zeyu, и др.
Опубликовано: (2017-01-01) -
Convergence Analysis and Cost Estimate of an MLMC-HDG Method for Elliptic PDEs with Random Coefficients
по: Meng Li, и др.
Опубликовано: (2021-05-01) -
Probabilistic threshold analysis by pairwise stochastic approximation for decision-making under uncertainty
по: Takashi Goda, и др.
Опубликовано: (2021-10-01)