The reachability problem for two-dimensional vector addition systems with states
We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then th...
Hlavní autoři: | Blondin, M, Englert, M, Finkel, A, Göller, S, Haase, C, Lazic, R, McKenzie, P, Totzke, P |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Association for Computing Machinery
2021
|
Podobné jednotky
-
A polynomial-time algorithm for reachability in branching VASS in dimension one
Autor: Göller, S, a další
Vydáno: (2016) -
Logics for Continuous Reachability in Petri Nets and Vector Addition Systems with States
Autor: Haase, C, a další
Vydáno: (2017) -
The Complexity of Reachability in Affine Vector Addition Systems with States
Autor: Michael Blondin, a další
Vydáno: (2021-07-01) -
Directed reachability for infinite-state systems
Autor: Blondin, M, a další
Vydáno: (2021) -
Vector Addition System Reversible Reachability Problem
Autor: Jérôme Leroux
Vydáno: (2013-02-01)