The reachability problem for two-dimensional vector addition systems with states
We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then th...
Auteurs principaux: | Blondin, M, Englert, M, Finkel, A, Göller, S, Haase, C, Lazic, R, McKenzie, P, Totzke, P |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Association for Computing Machinery
2021
|
Documents similaires
-
A polynomial-time algorithm for reachability in branching VASS in dimension one
par: Göller, S, et autres
Publié: (2016) -
Logics for Continuous Reachability in Petri Nets and Vector Addition Systems with States
par: Haase, C, et autres
Publié: (2017) -
The Complexity of Reachability in Affine Vector Addition Systems with States
par: Michael Blondin, et autres
Publié: (2021-07-01) -
Directed reachability for infinite-state systems
par: Blondin, M, et autres
Publié: (2021) -
Vector Addition System Reversible Reachability Problem
par: Jérôme Leroux
Publié: (2013-02-01)