Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Hlavní autor: | Nagrani, A |
---|---|
Další autoři: | Zisserman, A |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2020
|
Témata: |
Podobné jednotky
-
Sign language understanding using multimodal learning
Autor: Momeni, L
Vydáno: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
Autor: Adam Bielski, a další
Vydáno: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
Autor: Brown, A
Vydáno: (2022) -
Holistic image understanding with deep learning and dense random fields
Autor: Zheng, S
Vydáno: (2016) -
Learning with multimodal self-supervision
Autor: Chen, H
Vydáno: (2021)