Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Prif Awdur: | Nagrani, A |
---|---|
Awduron Eraill: | Zisserman, A |
Fformat: | Traethawd Ymchwil |
Iaith: | English |
Cyhoeddwyd: |
2020
|
Pynciau: |
Eitemau Tebyg
-
Sign language understanding using multimodal learning
gan: Momeni, L
Cyhoeddwyd: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
gan: Adam Bielski, et al.
Cyhoeddwyd: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
gan: Brown, A
Cyhoeddwyd: (2022) -
Holistic image understanding with deep learning and dense random fields
gan: Zheng, S
Cyhoeddwyd: (2016) -
Learning with multimodal self-supervision
gan: Chen, H
Cyhoeddwyd: (2021)