Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Egile nagusia: | Nagrani, A |
---|---|
Beste egile batzuk: | Zisserman, A |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
2020
|
Gaiak: |
Antzeko izenburuak
-
Sign language understanding using multimodal learning
nork: Momeni, L
Argitaratua: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
nork: Adam Bielski, et al.
Argitaratua: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
nork: Brown, A
Argitaratua: (2022) -
Holistic image understanding with deep learning and dense random fields
nork: Zheng, S
Argitaratua: (2016) -
Learning with multimodal self-supervision
nork: Chen, H
Argitaratua: (2021)