Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Hoofdauteur: | Nagrani, A |
---|---|
Andere auteurs: | Zisserman, A |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
2020
|
Onderwerpen: |
Gelijkaardige items
-
Sign language understanding using multimodal learning
door: Momeni, L
Gepubliceerd in: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
door: Adam Bielski, et al.
Gepubliceerd in: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
door: Brown, A
Gepubliceerd in: (2022) -
Holistic image understanding with deep learning and dense random fields
door: Zheng, S
Gepubliceerd in: (2016) -
Learning with multimodal self-supervision
door: Chen, H
Gepubliceerd in: (2021)