Video understanding using multimodal deep learning
<p>Our experience of the world is multimodal, however deep learning networks have been traditionally designed for and trained on unimodal inputs such as images, audio segments or text. In this thesis we develop strategies to exploit multimodal information (in the form of vision, text, speech a...
Главный автор: | Nagrani, A |
---|---|
Другие авторы: | Zisserman, A |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2020
|
Предметы: |
Схожие документы
-
Sign language understanding using multimodal learning
по: Momeni, L
Опубликовано: (2024) -
Understanding Multimodal Popularity Prediction of Social Media Videos With Self-Attention
по: Adam Bielski, и др.
Опубликовано: (2018-01-01) -
End-to-end learning, and audio-visual human-centric video understanding
по: Brown, A
Опубликовано: (2022) -
Holistic image understanding with deep learning and dense random fields
по: Zheng, S
Опубликовано: (2016) -
Learning with multimodal self-supervision
по: Chen, H
Опубликовано: (2021)