Defining ℤ in ℚ
We show that Z is definable in Q by a universal first-order formula in the language of rings. We also present an ∀∃-formula for Z in Q with just one universal quantifier. We exhibit new diophantine subsets of Q like the complement of the image of the norm map under a quadratic extension, and we give...
Egile nagusia: | Koenigsmann, J |
---|---|
Formatua: | Journal article |
Argitaratua: |
Princeton University, Department of Mathematics
2016
|
Antzeko izenburuak
-
Defining $\mathbb{Z}$ in $\mathbb{Q}$
nork: Koenigsmann, J
Argitaratua: (2010) -
Defining Transcendentals in Function Fields.
nork: Koenigsmann, J
Argitaratua: (2002) -
Definable henselian valuations
nork: Jahnke, F, et al.
Argitaratua: (2012) -
Defining coarsenings of valuations
nork: Jahnke, F, et al.
Argitaratua: (2017) -
Definable henselian valuations
nork: Jahnke, F, et al.
Argitaratua: (2015)