Slim DensePose: Thrifty learning from sparse annotations and motion cues

DensePose supersedes traditional landmark detectors by densely mapping image pixels to body surface coordinates. This power, however, comes at a greatly increased annotation time, as supervising the model requires to manually label hundreds of points per pose instance. In this work, we thus seek met...

Полное описание

Библиографические подробности
Главные авторы: Neverova, N, Thewlis, J, Gűler, R, Kokkinos, I, Vedaldi, A
Формат: Conference item
Язык:English
Опубликовано: IEEE 2020