Asymptotic properties of recursive particle maximum likelihood estimation
Using stochastic gradient search and the optimal filter derivative, it is possible to perform recursive (i.e., online) maximum likelihood estimation in a non-linear state-space model. As the optimal filter and its derivative are analytically intractable for such a model, they need to be approximated...
Main Authors: | Tadic, VZB, Doucet, A |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
IEEE
2019
|
Registos relacionados
-
Asymptotic properties of recursive particle maximum likelihood estimation
Por: Tadic, VZB, et al.
Publicado em: (2020) -
Optimal recursive maximum likelihood estimation
Publicado em: (2003) -
A distributed recursive maximum likelihood implementation for sensor registration
Por: Kantas, N, et al.
Publicado em: (2006) -
Bias of particle approximations to optimal filter derivative
Por: Tadic, VZB, et al.
Publicado em: (2021) -
Particle methods for maximum likelihood estimation in latent variable models
Por: Johansen, A, et al.
Publicado em: (2008)