An LP-designed algorithm for constraint satisfaction
The class Max (r, 2)-CSP consists of constraint satisfaction problems with at most two r-valued variables per clause. For instances with n variables and m binary clauses, we present an (O) over tilde (r(19m/100))-time algorithm. It is the fastest algorithm for most problems in the class (including M...
主要な著者: | Scott, A, Sorkin, G |
---|---|
フォーマット: | Conference item |
出版事項: |
2006
|
類似資料
-
Polynomial Constraint Satisfaction Problems, Graph Bisection, and the Ising Partition Function
著者:: Scott, A, 等
出版事項: (2009) -
Linear-programming design and analysis of fast algorithms for Max 2-CSP
著者:: Scott, A, 等
出版事項: (2007) -
Applying quantum algorithms to constraint satisfaction problems
著者:: Earl Campbell, 等
出版事項: (2019-07-01) -
LP Well-Posedness for Bilevel Vector Equilibrium and Optimization Problems with Equilibrium Constraints
著者:: Phan Quoc Khanh, 等
出版事項: (2014-01-01) -
Message-Passing Algorithms and Improved LP Decoding
著者:: Arora, Sanjeev, 等
出版事項: (2021)