Homomorphically encrypted gradient descent algorithms for quadratic programming
In this paper, we evaluate the different fully homomorphic encryption schemes, propose an implementation, and numerically analyze the applicability of gradient descent algorithms to solve quadratic programming in a homomorphic encryption setup. The limit on the multiplication depth of homomorphic en...
Päätekijät: | Bertolace, A, Gatsis, K, Margellos, K |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
IEEE
2024
|
Samankaltaisia teoksia
-
Cloud-based quadratic optimization with partially homomorphic encryption
Tekijä: Alexandru, AB, et al.
Julkaistu: (2020) -
Privacy-aware quadratic optimization using partially homomorphic encryption
Tekijä: Shoukry, Y, et al.
Julkaistu: (2016) -
Robust optimization for adversarial learning with finite sample complexity guarantees
Tekijä: Bertolace, A, et al.
Julkaistu: (2024) -
Implementing the Grover algorithm in homomorphic encryption schemes
Tekijä: Pablo Fernández, et al.
Julkaistu: (2024-11-01) -
Homomorphic Encryption on GPU
Tekijä: Ali Sah Ozcan, et al.
Julkaistu: (2023-01-01)